這張考卷的題目非常多,如果你的目標科系在台大理工學院,務必要精熟微積分全部內容與台大愛考的微分方程,練習時可以留意題目的作答順序與時間分配。
本解答由張旭老師及南享老師共同完成。
建議使用電腦瀏覽,手機或平板的算式可能會超出畫面。
第一題 (8 分)
Compute the following limits
● $\mathop {\lim }\limits_{x \to 0} (\cos x + \frac{1}{2}x^2 )^{\frac{1}{{x^4 }}} =$? (4 分)
● $\mathop {\lim }\limits_{x \to 0} \frac{{3x – \sin 3x}}{{5x – \tan 5x}} =$? (4 分)
提示
本題題有兩小題不定型的極限,可以使用泰勒定理處理,也可以直接使用羅必達法則,但如果使用羅必達法則,記得在考卷上說明清楚為何可以使用。
解答
$1^{\circ}$ 法一
原式$=\mathop {\lim }\limits_{x \to 0} e^{\ln (\cos x + \frac{1}{2}x^2 )^{\frac{1}{{x^4 }}} }$
$=e^{\mathop {\lim }\limits_{x \to 0} \frac{{\ln (\cos x + \frac{1}{2}x^2 )}}{{x^4 }}}$
$\mathop = \limits^{\text{L}} e^{\mathop {\lim }\limits_{x \to 0} \frac{{\frac{{ – \sin x + x}}{{\cos x + \frac{1}{2}x^2 }}}}{{4x^3 }}}$
$= e^{\mathop {\lim }\limits_{x \to 0} \frac{{ – \sin x + x}}{{4x^3 }} \cdot \frac{1}{{\cos x + \frac{1}{2}x^2 }}}$ $(\mathop {\lim }\limits_{x \to 0} \frac{{ – \sin x + x}}{{4x^3 }}\mathop = \limits^{\text{L}} \mathop {\lim }\limits_{x \to 0} \frac{{ – \cos x + 1}}{{12x^2 }}\mathop = \limits^{\text{L}} \mathop {\lim }\limits_{x \to 0} \frac{{\sin x}}{{24x}} = \frac{1}{{24}})$
$=e^{\frac{1}{24}} ∎$
法二
原式$= \mathop {\lim }\limits_{x \to 0} e^{\ln (\cos x + \frac{1}{2}x^2 )^{\frac{1}{{x^4 }}} }$
$= e^{\mathop {\lim }\limits_{x \to 0} \frac{{\ln (\cos x + \frac{1}{2}x^2 )}}{{x^4 }}}$
$\mathop = \limits^{\text{L}} e^{\mathop {\lim }\limits_{x \to 0} \frac{{ – \sin x + x}}{{(\cos x + \frac{1}{2}x^2 )4x^3 }}}$
$= e^{\mathop {\lim }\limits_{x \to 0} \frac{{( – x + \frac{{x^3 }}{{3!}} – \frac{{x^5 }}{{5!}} + \frac{{x^7 }}{{7!}} – \cdots ) + x}}{{\left[ {(1 – \frac{{x^2 }}{{2!}} + \frac{{x^4 }}{{4!}} – \cdots ) + \frac{1}{2}x^2 } \right] \cdot 4x^3 }}}$
$= e^{\mathop {\lim }\limits_{x \to 0} \frac{{\frac{1}{6}x^3 + \cdots }}{{4x^3 + \frac{1}{6}x^7 + \cdots }}} = e^{\frac{1}{{24}}} ∎$
$2^{\circ}$ 法一
原式$\mathop {\rm{ = }}\limits^{\text{L}} \mathop {\lim }\limits_{x \to 0} \frac{{3 – 3\cos 3x}}{{5 – 5\sec ^2 5x}}$
$\mathop = \limits^{\text{L}} \mathop {\lim }\limits_{x \to 0} \frac{{9\sin 3x}}{{( – 5) \cdot 2\sec 5x \cdot \sec 5x \cdot \tan 5x \cdot 5}}$
$= \mathop {\lim }\limits_{x \to 0} \frac{9}{{ – 50}} \cdot \frac{1}{{\sec ^2 5x}} \cdot \frac{{\sin 3x}}{{\tan 5x}}$ $(\mathop {\lim }\limits_{x \to 0} \frac{{\sin 3x}}{{\tan 5x}}\mathop = \limits^{\text{L}} \mathop {\lim }\limits_{x \to 0} \frac{{3\cos 3x}}{{5\sec ^2 5x}} = \frac{3}{5})$
$= – \frac{9}{{50}} \cdot \frac{3}{5} = – \frac{{27}}{{250}} ∎$
法二
原式${\rm{ = }}\mathop {\lim }\limits_{x \to {\rm{0}}} \frac{{3x – (3x – \frac{{(3x)^3 }}{{3!}} + \cdots )}}{{5x – (5x + \frac{1}{3}(5x)^3 + \cdots )}}$
$= \mathop {\lim }\limits_{x \to 0} \frac{{\frac{9}{2}x^3 + \cdots }}{{ – \frac{{125}}{3}x^3 + \cdots }} = \frac{9}{2} \cdot ( – \frac{3}{{125}}) = – \frac{{27}}{{250}} ∎$
附註:$\mathop = \limits^{\rm{L}}$ 表示此等號使用羅必達法則 (L’Hôpital’s rule)
第二題 (4 分)
The graph of $f(x) = (x + 1)^{\frac{2}{3}} (x – 2)^{\frac{1}{3}}$ has an inflection point at $x=$?
提示
這一題要找單變數函數 $f(x)$ 的反曲點,首要動作即是算 $f^{\prime\prime}(x)$ ,要注意的是並非只有 $f^{\prime\prime}(x)=0$ 的點才是反曲點的候選人,只要能讓凹口性改變,也就是使 $f^{\prime\prime}(x)$ 左右兩側異號的 $x$ 為反曲點。
解答
\begin{array}{cl} 1^{\circ}\ f^{\prime}(x) & =\frac{2}{3}(x + 1)^{ – \frac{1}{3}} (x – 2)^{\frac{1}{3}} + (x + 1)^{\frac{2}{3}} \cdot \frac{1}{3}(x – 2)^{ – \frac{2}{3}} \\ & =\frac{2}{3}(\frac{{x – 2}}{{x + 1}})^{\frac{1}{3}} + \frac{1}{3}(\frac{{x + 1}}{{x – 2}})^{\frac{2}{3}} \\ & =\frac{1}{3} \cdot \frac{{2(x – 2)^{\frac{1}{3}} (x – 2)^{\frac{2}{3}} + (x + 1)^{\frac{2}{3}} (x + 1)^{\frac{1}{3}} }}{{(x + 1)^{\frac{1}{3}} (x – 2)^{\frac{2}{3}} }}\\&=\frac{1}{3} \cdot \frac{{2(x – 2) + (x + 1)}}{{(x + 1)^{\frac{1}{3}} (x – 2)^{\frac{2}{3}} }}\\&=\frac{{x – 1}}{{(x + 1)^{\frac{1}{3}} (x – 2)^{\frac{2}{3}} }} \end{array}
$\Rightarrow f^{\prime\prime}(x) = \frac{{(x + 1)^{\frac{1}{3}} (x – 2)^{\frac{2}{3}} – (x – 1)\left[ {\frac{1}{3}(x + 1)^{ – \frac{2}{3}} (x – 2)^{\frac{2}{3}} + (x + 1)^{\frac{1}{3}} \cdot \frac{2}{3}(x – 2)^{ – \frac{1}{3}} } \right]}}{{(x + 1)^{\frac{2}{3}} (x – 2)^{\frac{4}{3}} }}$
$\begin{array}{cl} \Rightarrow f^{\prime\prime}(x) & =\frac{{(x + 1)^{\frac{1}{3}} (x – 2)^{\frac{2}{3}} – (x – 1)\left[ {\frac{1}{3}(\frac{{x – 2}}{{x + 1}})^{\frac{2}{3}} + \frac{2}{3}(\frac{{x + 1}}{{x – 2}})^{\frac{1}{3}} } \right]}}{{(x + 1)^{\frac{2}{3}} (x – 2)^{\frac{4}{3}} }} \\ & =\frac{{(x + 1)^{\frac{1}{3}} (x – 2)^{\frac{2}{3}} – (x – 1) \cdot \frac{1}{3} \cdot \frac{{(x – 2) + 2(x + 1)}}{{(x + 1)^{\frac{2}{3}} (x – 2)^{\frac{1}{3}} }}}}{{(x + 1)^{\frac{2}{3}} (x – 2)^{\frac{4}{3}} }} \\ & =\frac{{\frac{{(x + 1)(x – 2) – (x – 1) \cdot x}}{{(x + 1)^{\frac{2}{3}} (x – 2)^{\frac{1}{3}} }}}}{{(x + 1)^{\frac{2}{3}} (x – 2)^{\frac{4}{3}} }}\\&=\frac{{ – 2}}{{(x + 1)^{\frac{4}{3}} (x – 2)^{\frac{5}{3}} }}\left\{ {\begin{array}{cc} { > 0,} & {x < 2} \\ {\text{D.N.E.},} & {x = 2} \\ { < 0,} & {x > 2}\end{array}} \right. \end{array}$
由二次微分檢驗法得:凹口性在 $x=2$ 發生改變,因此 $x=2$ 為反曲點 ∎
附註:$\mathop = \limits^{\rm{L}}$ 表示此等號使用羅必達法則 (L’Hôpital’s rule)
此題考點:相對、絕對極值、鞍點
第三題 (4 分)
If $x^5+y^5=33$ then $\left. {\frac{{d^2 y}}{{dx^2 }}} \right|_{x = 1} =$?
提示
隱函數微分是微積分考試的基本題,須注意本題要求二次微分。
解答
$1^{\circ}$ 一次微分$\Rightarrow 5x^4 + 5y^4 \cdot y’ = 0$
二次微分$\Rightarrow 20x^3 + 20y^3 \cdot y’ \cdot y’ + 5y^4 y^{\prime\prime} = 0$
$\Rightarrow 4x^3 + 4y^3 \cdot (y’)^2 + 5y^4 y^{\prime\prime} = 0$
$2^{\circ}$ 當 $x=1$ 時
$1^5 + y^5 = 33 \Rightarrow y^5 = 32 \Rightarrow y = 2$
$5 \cdot 1^4 + \left. {2^4 \cdot y’} \right|_{x = 1} = 0 \Rightarrow \left. {y’}\right|_{x = 1} = – \frac{1}{{16}}$
$\Rightarrow 20 \cdot 1^3 + 20 \cdot 2^3 ( – \frac{1}{{16}})^2 + \left. {5 \cdot 2^4 y^{\prime\prime}} \right|_{x = 1} = 0$
$\Rightarrow 20 + 160 \cdot \frac{1}{{16}} + \left. {80y^{\prime\prime}} \right|_{x = 1}= 0 \Rightarrow \left. {y^{\prime\prime}} \right|_{x = 1}= – \frac{{165}}{8} \cdot \frac{1}{{80}} = – \frac{{33}}{{128}}$ ∎
此題考點:萊布尼茲微分符號與隱函數微分法
第四題 (4 分)
If $\int_1^{2x + 1} {\frac{{f(t)}}{{e^t }}} dt = \tan ^{ – 1} x$, then $f(3)=$?
提示
看到積分式的上下界有變數,馬上想到微積分基本定理。
解答
$1^{\circ}\ \frac{d}{{dx}}\int_1^{2x + 1} {\frac{{f(t)}}{{e^t }}} dt = \frac{d}{{dx}}\tan ^{ – 1} x$
$\Rightarrow \frac{{f(2x + 1)}}{{e^{2x + 1} }} \cdot 2 = \frac{1}{{1 + x^2 }}$
$2^{\circ}\ x=1$ 代入
$\Rightarrow \frac{{f(3)}}{{e^3 }} \cdot 2 = \frac{1}{2}$
$\Rightarrow f(3) = \frac{1}{2} \cdot \frac{{e^3 }}{2} = \frac{{e^3 }}{4} ∎$
此題考點:微積分基本定理 II
第五題 (12 分)
● $\int_0^2 {\frac{{x^3 }}{{(x^2 + 4)^3 }}} dx =$? (4 分)
● $\int_0^{\ln 2} {\sqrt {e^x – 1} } dx =$? (Hint: Use $u = \sqrt {e^x – 1}$.) (4 分)
● $\int_1^3 {\frac{{x – 2}}{{\sqrt {x^2 – 1} }}} dx =$? (4 分)
提示
單變數函數的積分為必考題,馬上想到四大積分法。第一小題因分母有平方和,可以嘗試三角置換,也可使用變數變換法;第二小題題目已提示變數變換法;第三小題分母有根號平方差,也是嘗試使用三角置換。
解答
$1^{\circ}$ 令 $x = 2\tan u \Rightarrow dx = 2\sec ^2 udu$
原式$=\frac{1}{4}\int_0^{\frac{\pi }{4}} {\frac{{\tan ^3 u}}{{\sec ^4 u}}} du$
$\frac{1}{4}\int_0^{\frac{\pi }{4}} {\sin ^3 u\cos u} du$ (Let $v = \sin u \Rightarrow dv = \cos udu$)
$\frac{1}{4}\int_0^{\frac{1}{{\sqrt 2 }}} {v^3 } dv = \frac{1}{4} \cdot \left. {\frac{{v^4 }}{4}} \right|_0^{\frac{1}{{\sqrt 2 }}} = \frac{1}{{16}} \cdot \frac{1}{4} = \frac{1}{{64}} ∎$
$2^{\circ}$ 令 $u = \sqrt {e^x – 1}\Rightarrow du = \frac{1}{2}(e^x – 1)^{ – \frac{1}{2}} e^x dx = \frac{{e^x }}{{2\sqrt {e^x – 1} }}dx = \frac{{u^2 + 1}}{{2u}}dx$
原式$=\int_0^1 {u \cdot \frac{{2u}}{{u^2 + 1}}} du$
$=2\int_0^1 {1 – \frac{1}{{u^2 + 1}}} du$
$=\left[ {u – \tan ^{ – 1} u} \right]_{u = 0}^{u = 1}$
$= 2(1 – \frac{\pi }{4}) = 2 – \frac{\pi }{2} ∎$
$3^{\circ}$ 令 $x = \sec u \Rightarrow dx = \sec u\tan udu$
原式$=\int_0^{\sec ^{ – 1} 3} {\frac{{\sec u – 2}}{{\tan u}} \cdot \sec u \cdot \tan u} du$
$=\int_0^{\sec ^{ – 1} 3} {\sec ^2 u – 2\sec u} du$
$=\int_0^{\sec ^{ – 1} 3} {\sec ^2 u} du – 2\int_0^{\sec ^{ – 1} u} {\sec u} du$
$=\left. {\tan u} \right|_0^{\sec ^{ – 1} 3} – \left. {2\ln \left| {\sec u + \tan u} \right|} \right|_0^{\sec ^{ – 1} 3}$
$=\tan (\sec ^{ – 1} 3) – 2(\ln \left| {\sec (\sec ^{ – 1} 3) + \tan (\sec ^{ – 1} 3)} \right| – \ln \left| {\sec 0 + \tan 0} \right|)$
$=2\sqrt 2 – 2\ln (3 + 2\sqrt 2 ) ∎$
第六題 (4 分)
The integral $\int_0^\infty {\frac{{(\tan ^{ – 1} x)^4 }}{{x^a }}} dx$ converges if and only if $a$ is in the interval ?
提示
本題題考瑕積分型的斂散性,觀察到分母是 $x^a$ ,可以想到可能和P級數有關,又P級數可以分為0至1區間與大於1兩種情況,剩下的問題就是arctan 如何處理。在0至1這一區可以利用均值定理找出合適的函數做比較,在大於1的情況也有直觀的範圍,最後就能找出都收斂的區域。
解答
$1^{\circ}\ \int_0^\infty {\frac{{(\tan ^{ – 1} x)^4 }}{{x^a }}} dx =\underbrace {\int_0^1 {\frac{{(\tan ^{ – 1} x)^4 }}{{x^a }}} dx}_{\text{I}}\underbrace {\int_1^\infty {\frac{{(\tan ^{ – 1} x)^4 }}{{x^a }}} dx}_{{\text{II}}} $
$2^{\circ}\ \tan ^{ – 1} x – \tan ^{ – 1} 0 = \left. {(\tan ^{ – 1} x)’} \right|_{x = c} (x – 0),\ 0<c<x$ by 均值定理
$\Rightarrow \tan ^{ – 1} x = \frac{1}{{1 + c^2 }}x,\ 0<c<1$
$\Rightarrow \frac{x}{2} < \tan ^{ – 1} x < x \Rightarrow \int_0^1 {\frac{{(\frac{x}{2})^4 }}{{x^a }}}dx < \int_0^1 {\frac{{x^4 }}{{x^a }}} dx$
$\Rightarrow \frac{1}{{16}}\int_0^1 {\frac{1}{{x^{a – 4} }}} dx < \int_0^1 {\frac{{(\tan ^{ – 1} x)^4 }}{{x^a }}} dx < \int_0^1 {\frac{1}{{x^{a – 4} }}} dx$
$\begin{array}{cc}\Rightarrow \int_0^1 {\frac{{(\tan ^{ – 1} x)^4 }}{{x^a }}} dx\text{ converges}&\Leftrightarrow \int_0^1 {\frac{1}{{x^{a – 4} }}}dx\text{ converges}\\ &\Leftrightarrow a – 4 < 1 \Leftrightarrow a < 5\end{array}$
$3^{\circ}$ For $1\leq x<\infty,\ \frac{\pi }{4} \leqslant \tan ^{ – 1} x < \frac{\pi }{2}$
$\Rightarrow c_1 \int_1^\infty {\frac{1}{{x^a }}} dx = \int_1^\infty {\frac{{(\frac{\pi }{4})^4 }}{{x^a }}} dx \leqslant \int_1^\infty {\frac{{(\tan ^{ – 1} x)^4 }}{{x^a }}} dx < \int_1^\infty {\frac{{(\frac{\pi }{2})^4 }}{{x^a }}} dx = c_2 \int_1^\infty {\frac{1}{{x^a }}} dx$
$\int_1^\infty {\frac{{(\tan ^{ – 1} x)^4 }}{{x^a }}} dx$ converges $\Leftrightarrow \int_1^\infty {\frac{1}{{x^a }}} dx$ converges $\Leftrightarrow a>1$
$4^{\circ}$ By $2^{\circ},\ 3^{\circ}$
$\int_0^\infty {\frac{{(\tan ^{ – 1} x)^4 }}{{x^a }}} dx = \int_0^1 {\frac{{(\tan ^{ – 1} x)^4 }}{{x^a }}} dx + \int_1^\infty {\frac{{(\tan ^{ – 1} x)^4 }}{{x^a }}} dx$ converges $\Leftrightarrow 1 < a < 5 ∎$
此題考點:p-級數
第七題 (4 分)
Suppose that $y’=xy-x$ with $y(0)=2$, then $y(2)=$?
提示
本題為常微分方程,而且是基礎的變數可分離型。
解答
$1^{\circ}\ \frac{{dy}}{{dx}} = x(y – 1)$
$\Rightarrow \frac{1}{{y – 1}}dy = xdx$
$\Rightarrow \int {\frac{1}{{y – 1}}} dy = \int x dx$
$\Rightarrow \ln \left| {y – 1} \right| = \frac{1}{2}x^2 + C$
$\Rightarrow \left| {y – 1} \right| = e^{\frac{{x^2 }}{2} + C} \Rightarrow y – 1 = ke^{\frac{{x^2 }}{2}}$
$\Rightarrow y = 1 + ke^{\frac{{x^2 }}{2}}$
$2^{\circ}\ \because y(0)=1$
$\therefore 2 = y(0) = 1 + ke^{\frac{{0^2 }}{2}} = 1 + k$
$\Rightarrow k=1$
$\Rightarrow y = 1 + e^{\frac{{x^2 }}{2}}$
$\Rightarrow y(2) = 1 + e^{\frac{4}{2}} = 1 + e^2 ∎$
此題考點:微分方程-變數可分離型
第八題 (4 分)
Suppose that $y’+y=2\cos x$ with $y(0)=2$, then $y(\frac{\pi}{6})=$?
提示
本題微分方程的長相為:$y’+P(x)y=Q(x)$,可想到公式解。
解答
$1^{\circ}\ u(x) = e^{\int 1 dx} = e^{x + C}$ 取 $u(x)=e^x$
$2^{\circ}\ \underbrace {e^x y’ + e^x y}_{(e^x y)’} = 2e^x \cos x$
$\begin{array}{cc}\Rightarrow e^x y&=2\int {e^x \cos x} dx\\&=e^x (\sin x + \cos x) + C\end{array}$
$\Rightarrow y = \sin x + \cos x + Ce^{ – x}$
$3^{\circ}\ \because y(0)=0+1+C=2$
$\therefore C=1$
$\Rightarrow y(\frac{\pi }{6}) = \sin \frac{\pi }{6} + \cos \frac{\pi }{6} + e^{ – \frac{\pi }{6}} ∎$
此題考點:微分方程:公式解
第九題 (4 分)
Let $R$ be the region below the curve $y=\sin^2 x$ when $0\leq x\leq \pi$ and $V$ be the volume of the solid obtained by rotating $R$ about the $y$-axis. Then $V=$?
提示
看到旋轉體積分要馬上想到圓盤法或剝殼法,要使用哪種算法可以從被旋轉的函數判斷,剩下就是看積分的實力。
第十題 (8 分)
Find the sum
● $\sum\limits_{n = 2}^\infty {\frac{{(n – 2)! + 2^n }}{{n!}}} =$? (4 分)
● $\sum\limits_{n = 1}^\infty {\frac{1}{{2n – 1}}(\frac{1}{{\sqrt 3 }})^{2n} } =$? (4 分)
提示
這一題有兩個級數和,第一小題可以拆成兩組,其中一組化簡後是相消級數,另一組則是熟悉的自然指數在 $x=2$ 的泰勒展開式。第二小題則是某種泰勒級數的變化型,因此可以靠已知的泰勒級數來推得,如果你對這類的題目不是很擅長,影片最後提到的幾個函數的泰勒展開式一定要多練習推導並且練熟。
解答
$1^{\circ}$ 原式$= \sum\limits_{n = 2}^\infty {(\frac{{(n – 2)!}}{{n!}} + \frac{{2^n }}{{n!}})}$
$= \sum\limits_{n = 2}^\infty {\frac{1}{{n(n – 1)}}} + \sum\limits_{n = 2}^\infty {\frac{{2^n }}{{n!}}}$
$= \sum\limits_{n = 2}^\infty {(\frac{1}{{n – 1}} – \frac{1}{n})} + e^2 – 3$
$= \mathop {\lim }\limits_{n \to \infty } (1 – \frac{1}{2} + \frac{1}{2} – \frac{1}{3} + \cdots + \frac{1}{{n – 1}} – \frac{1}{n}) + e^2 – 3$
$= \mathop {\lim }\limits_{n \to \infty } (1 – \frac{1}{n}) + e^2 – 3 = e^2 – 2 ∎$
$2^{\circ}\ \frac{1}{{1 – x^2 }} = 1 + x^2 + x^4 + x^6 + \cdots$
$\Rightarrow \int_0^x {\frac{1}{{1 – t^2 }}} dt = x + \frac{{x^3 }}{3} + \frac{{x^5 }}{5} + \frac{{x^7 }}{7} + \cdots$
$\Rightarrow x\int_0^x {\frac{1}{{1 – t^2 }}} dt = x^2 + \frac{{x^4 }}{3} + \frac{{x^6 }}{5} + \frac{{x^8 }}{7} + \cdots = \sum\limits_{n = 1}^\infty {\frac{1}{{2n – 1}}} x^{2n}$
$\begin{array}{cl} \because\ \int_0^x {\frac{1}{{1 – t^2 }}} dt& =\frac{1}{2}\int_0^x {\frac{1}{{1 + t}} + \frac{1}{{1 – t}}} dt = \frac{1}{2}\left[ {\ln \left| {1 + t} \right| – \ln \left| {1 – t} \right|} \right]_{t = 0}^{t = x} \\ & = \frac{1}{2}(\ln \left| {1 + x} \right| – \ln \left| {1 – x} \right|) = \frac{1}{2}\ln \left| {\frac{{1 + x}}{{1 – x}}} \right| \end{array}$
$\therefore x \cdot \frac{1}{2}\ln \left| {\frac{{1 + x}}{{1 – x}}} \right| = \sum\limits_{n = 1}^\infty {\frac{1}{{2n – 1}}} x^{2n}$
$\Rightarrow \sum\limits_{n = 1}^{} {\frac{1}{{2n – 1}}} (\frac{1}{{\sqrt 3 }})^{2n} = \frac{1}{{\sqrt 3 }} \cdot \frac{1}{2}\ln \left| {\frac{{1 + \frac{1}{{\sqrt 3 }}}}{{1 – \frac{1}{{\sqrt 3 }}}}} \right| = \frac{1}{{2\sqrt 3 }}\ln \left| {\frac{{\sqrt 3 + 1}}{{\sqrt 3 – 1}}} \right| ∎$
此題考點:泰勒級數及泰勒定理
第十一題 (4 分)
The 3th nonzero term in the Maclaurin series of $\ln (2x^3+5)$ is ?
提示
這一題考指定函數的馬克勞林級數(在 $x=0$ 的泰勒展開式)的第三項,要做泰勒展開式的題目,千萬不能只記定義,會導致很多題目花費龐大時間,而且還很容易算錯,只要在收斂區間內,大多能利用已知的展開式得出。
解答
◎ $\ln (1 + x) = x – \frac{{x^2 }}{2} + \frac{{x^3 }}{3} – \frac{{x^4 }}{4} + \cdots ,\ \left| x \right| < 1$
◎ $\ln {\rm{(1}} – x{\rm{) = }} – x – \frac{{x^2 }}{2} – \frac{{x^3 }}{3} – \frac{{x^4 }}{4} \cdots ,\ \left| x \right| < 1$
$\begin{array}{cl} 1^{\circ}\ \ln(2x^3+5) & =\ln (5(1 + \frac{2}{5}x^3 )) = \ln 5 + \ln (1 + \frac{2}{5}x^3 ) \\ & = \ln 5 + \frac{2}{5}x^3 – \frac{1}{2}(\frac{2}{5}x^3 )^2 + \cdots \end{array}$
$2^{\circ}$ 所求$= – \frac{1}{2}(\frac{2}{5})^2 x^6 = – \frac{2}{{25}}x^6 ∎$
此題考點:泰勒級數及泰勒定理
第十二題 (4 分)
The 3th nonzero term of the Maclaurin series of the function $f(x) = \left\{ {\begin{array}{cc} {\csc x – \cot x,} & {x \ne 0} \\ {0,} & {x = 0} \end{array}} \right.$ is ?
提示
這一題還是求指定函數的馬克勞林級數的第三項,不過不是很常見的類型,但還是可以從函數找到端倪,$\csc x,\ \cot x$ 都跟 $\sin x,\ \cos x$ 有關,因此把函數合併在一起後,就可以用兩個已知展開式做除法得到答案。如果你對半角公式以及 $\tan x$ 的馬克勞林級數很熟,也是一個可行的方法。
解答
$\begin{array}{cl} 1^{\circ}\ \csc x-\cot x & =\frac{1}{{\sin x}} – \frac{{\cos x}}{{\sin x}} \\ & =\frac{{1 – \cos x}}{{\sin x}} = \frac{{1 – (1 – \frac{{x^2 }}{{2!}} + \frac{{x^4 }}{{4!}} – \frac{{x^6 }}{{6!}} + \cdots )}}{{x – \frac{{x^3 }}{{3!}} + \frac{{x^5 }}{{5!}} – \frac{{x^7 }}{{7!}} + \cdots }} \\ & =\frac{{\frac{1}{2}x^2 – \frac{1}{{24}}x^4 + \frac{1}{{720}}x^6 \cdots }}{{x – \frac{1}{6}x^3 + \frac{1}{{120}}x^5 \cdots }}\\&=\frac{1}{2}x + \frac{1}{{24}}x^3 + \frac{1}{{240}}x^5 + \cdots ∎\end{array}$
此題考點:泰勒級數及泰勒定理
第十三題 (8 分)
Let $\mathop {r} \limits^{\rightharpoonup}(t) = (e^t \cos t,e^t \sin t,e^t ),\ – 1 \le t \le 1$
● The length of the curve is ? (4 分)
● The curvature at the point $t=0$ is ? (4 分)
提示
本題考三維的曲線相關題目,有既定公式可以使用,不論是求曲線長與算曲率都是需要對 $\mathop {r} \limits^{\rightharpoonup}(t)$ 做微分,而且曲率 $\text{K} (t)$ 需求的計算量更大,做題目時一定要小心,平時也要將計算功力練熟。
解答
$1^{\circ}\ r'(t) = (e^t \cos t – e^t \sin t,e^t \sin t + e^t \cos t,e^t )$
$\left| {r'(t)} \right| = \sqrt{\begin{array}{l} e^{2t} \cos ^2 t + e^{2t} \sin ^2 t – 2e^{2t} \cos t\sin t \\ + e^{2t} \sin ^2 t + e^{2t} \cos ^2 t + 2e^{2t} \sin t\cos t \\ + e^{2t} \end{array}}=\sqrt {3e^{2t} } = \sqrt 3 e^t$
$\begin{array}{cl} r'(t) \times r^{\prime\prime}(t) & =\left| {\begin{array}{ccc} i & j & k \\ {e^t \cos t – e^t \sin t} & {e^t \sin t + e^t \cos t} & {e^t }\\ { – 2e^t \sin t} & {2e^t \cos t} & {e^t } \end{array}} \right| \\ & = \begin{array}{c} {(e^{2t} \sin t + e^{2t} \cos t – 2e^{2t} \cos t, – 2e^{2t}\sin t – e^{2t} \cos t + e^{2t} \sin t,} \\ {2e^{2t} \cos ^2 t – 2e^{2t} \cos t\sin t + 2e^{2t} \sin ^2 t + 2e^{2t} \cos t\sin t)} \end{array} \\ & =(e^{2t} \sin t – e^{2t} \cos t, – e^{2t} \sin t – e^{2t} \cos t,2e^{2t} ) \end{array}$
$\begin{array}{cl} \Rightarrow \left| {r'(t) \times r^{\prime\prime}(t)} \right| & =\sqrt {\begin{array}{c} {e^{4t} \sin ^2 t + e^{4t} \cos ^2 t – 2e^{4t} \sin t\cos t} \\ { + e^{4t} \sin ^2 t + e^{4t} \cos ^2 t + 2e^{4t} \sin t\cos t} \\ { + 4e^{4t} } \end{array}} \\ & =\sqrt {6e^{4t} } = \sqrt 6 e^{2t} \end{array}$
$\Rightarrow \text{K}(t) = \frac{{\left| {r'(t) \times r^{\prime\prime}(t)} \right|}}{{\left| {r'(t)} \right|^3 }}= \frac{{\sqrt 6 e^{2t} }}{{(\sqrt 3 e^t )^3 }} = \frac{{\sqrt 6 e^{2t} }}{{3\sqrt 3 e^{3t} }} = \frac{{\sqrt 2 }}{{3e^t }}$
$\Rightarrow \text{K}(0) = \frac{{\sqrt 2 }}{3} ∎$
此題考點:曲線分析(下)
第十四題 (4 分)
The shortest distance from the origin to the paraboloid $z = \frac{{x^2 + 2y^2 – 36}}{4}$ is ?
提示
要求多變數函數和原點距離的最小值,也就是限制條件下求極值,也是使用拉格朗日乘數法,雖然目標函數是很明確的,但是有根號不好處理,這時候可以稍微改變一下想法,因為 $x^2+y^2+z^2$ 極值也會是開根號後的極值,所以可以改變一下目標函數,只是最後的答案一定要填對。
解答
$1^{\circ}$ 目標函數:$\sqrt{x^2+y^2+z^2}$
Let $f(x,y,z) = x^2 + y^2 + z^2,\ z = \frac{{x^2 + 2y^2 – 36}}{4} \Rightarrow \underbrace {x^2 + 2y^2 – 4z}_{g(x)} = 36$
$2^{\circ}\ \left\{ {\begin{array}{cc} {\nabla f + \lambda \nabla g = 0}&\Rightarrow (2x,2y,2z) + \lambda (2x,4y, – 4) = (0,0,0) \\ {x^2 + 2y^2 – 4z = 36}& \end{array}} \right.$
$\begin{array}{c} { \Rightarrow \left\{ {\begin{array}{c} {2x + 2\lambda x = 0} \\ {2y + 4\lambda x = 0} \\ {2z – 4\lambda = 0} \end{array}} \right.} \\ {x^2 + 2y^2 – 4z = 36} \end{array} \Rightarrow \left\{ {\begin{array}{l} {x(1 + \lambda ) = 0\Rightarrow x=0\text{ or }\lambda =-1} \\ {y(1 + 2\lambda ) = 0} \\ {z – 2\lambda = 0} \\ {x^2 + y^2 – 4z = 36}\end{array}} \right.$
$\begin{array}{cl} \text{For} & \lambda=-1: \\ & \Rightarrow 1 + 2\lambda \ne 0 \Rightarrow y = 0 \\ & \text{Also, }z=2\lambda=-2\\&\because x^2+2y^2-4z=36\\&\therefore x^2 + 0 + 8 = 36 \Rightarrow x^2 = 28 \Rightarrow x = \pm 2\sqrt 7 \\&\Rightarrow (x,y,z) = ( \pm 2\sqrt 7 ,0, – 2) \end{array}$
$\begin{array}{cl} \text{For} & x=0: \\ & \because y(1+2\lambda)=0 \\ & \therefore y=0\text{ or }\lambda=-\frac{1}{2}\\&\begin{array}{cl} (1) & \text{ For }\lambda=-\frac{1}{2}: \\ & \Rightarrow z=2\lambda=-1 \\ & \because x^2+2y^2+4=36\\&\therefore 0+2y^2+4=36\Rightarrow 2y^2=32\Rightarrow y=\pm 4 \\&\Rightarrow (x,y,z)=(0,\pm 4,-1)\\ (2)& \text{ For }y=0:\\&\because x^2+2y^2-4z=36\\&\therefore 0+0-4z=36\Rightarrow z=-9\\&\Rightarrow (x,y,z)=(0,0,-9) \end{array} \end{array}$
$\begin{array}{cl} 3^{\circ}\text{ For} & (x,y,z)=(\pm 2\sqrt{7},0,-2),\ f(x,y,z)=32 \\ &(x,y,z) =(0,\pm 4,1),\ f(x,y,z)=17 \\ & (x,y,z)=(0,0,9),\ f(x,y,z)=81 \end{array}$
所求$=\sqrt{17} ∎$
此題考點:拉格朗日乘數法
第十五題 (4 分)
$\int_0^1 {\int_0^2 {\int_{\frac{y}{2}}^1 {yz\cos (x^3 – 1)} } } dxdydz =$ ?
提示
這是一題是三重積分,同樣也有幾種常考的觀念:積分次序交換、柱座標、球座標…等,觀察可以發現沒有圓與球相關的特徵,所以可以嘗試使用積分次序交換。
解答
$\begin{array}{cl} 1^{\circ}\ \int_0^1 {\int_0^1 {\int_0^{2x} {yz\cos (x^3 – 1)} dy} dz} dx & =\int_0^1 {\cos (x^3 – 1)} \int_0^1 z \int_0^{2x} y dydzdx \\ & == \int_0^1 {\cos (x^3 – 1)} \int_{\rm{0}}^{\rm{1}} {z \cdot 2x^2 } dzdx \\ & =2\int_0^1 {\cos (x^3 – 1) \cdot x^2 \cdot \frac{1}{2}} dx\\&(\text{Let }u = x^3 – 1 \Rightarrow du = 3x^2 dx)\\&\int_{ – 1}^0 {\cos u \cdot \frac{{du}}{3}} = \left. {\frac{1}{3}\sin u} \right|_{u = – 1}^{u = 0}\\&=\frac{1}{3}(0 – \sin ( – 1)) = \frac{1}{3}\sin 1 ∎ \end{array}$
此題考點:三變數函數的積分
第十六題 (4 分)
The volume of the solid described by $x^2+y^2\leq 1$ and $x^2+y^2+z^2\leq 1$, is ?
提示
本題要求圓柱與球交集的體積,比較直接的做法就是三重積分下去寫。由於積分區域是在一個圓上,可以用二重積分的思路下手,遇到圓相關 $x^2+y^2$ 可嘗試使用極座標或柱座標變換。
解答
$\begin{array}{rl} 1^{\circ}\ V & =2\iint_{\Omega}\sqrt {4 – x^2 – y^2 }dxdy \\ & =2\int_0^{2\pi } {\int_0^1 {\sqrt {4 – r^2 } } } rdrd\theta\\ & (\text{Let }u = 4 – r^2 \Rightarrow du = 2rdr)\\&=2\int_0^{2\pi } {\int_4^3 {u^{\frac{1}{2}} } \cdot \frac{{du}}{{ – 2}}} d\theta\\&=\int_0^{2\pi } {\int_3^4 {u^{\frac{1}{2}} } } dud\theta\\&= \int_0^{2\pi } {\left. {\frac{2}{3}u^{\frac{3}{2}} } \right|_{u = 3}^{u = 4} d\theta } {\rm{ = }}\frac{{\rm{2}}}{{\rm{3}}}{\rm{(8}} – {\rm{3}}\sqrt {\rm{3}} {\rm{)}} \cdot {\rm{2}}\pi = \frac{{32 – 12\sqrt 3 }}{3}\pi ∎ \end{array}$
此題考點:柱座標與球座標
第十七題 (4 分)
The area of the surface $x^2+y^2+z^2=4,\ (x-1)^2+y^2\leq 1,$ is ?
提示
這題要算曲面的表面積,這個曲面是球 $x^2+y^2+z^2=4$ 被一個圓 $(x-1)^2+y^2=1$。
解答
$1^{\circ}$ 所求$=2\iint_{\Omega}\left| {r_x \times r_y } \right|dxdy$
$=2\iint_{\Omega}\left| {(1,0,\frac{{ – 2x}}{{2\sqrt {1 – x^2 – y^2 } }}) \times (0,1,\frac{{ – y}}{{\sqrt {1 – x^2 – y^2 } }})} \right|dxdy$
$=2\iint_{\Omega}\sqrt {\frac{{x^2 + y^2 + 4 – x^2 – y^2 }}{{4 – x^2 – y^2 }}}dxdy$
$=2\iint_{\Omega}\frac{2}{{\sqrt {4 – x^2 – y^2 } }}dxdy$
$= 4\int_{ – \frac{\pi }{2}}^{\frac{\pi }{2}} {\int_0^{2\cos \theta } {\frac{1}{{\sqrt {4 – r^2 } }}} rdr} d\theta$
$= 4\int_{ – \frac{\pi }{2}}^{\frac{\pi }{2}} {\int_4^{4\sin ^2 \theta } {u^{ – \frac{1}{2}} \cdot} } \frac{{du}}{{ – 2}}d\theta$
$= 2\int_{ – \frac{\pi }{2}}^{\frac{\pi }{2}} {2 \cdot \left. {u^{\frac{1}{2}} } \right|_{u = 4\sin ^2 \theta }^{u = 4} } d\theta$
$= 4\int_{ – \frac{\pi }{2}}^{\frac{\pi }{2}} {2 – 2\left| {\sin \theta } \right|} d\theta = 8\int_0^{\frac{\pi }{2}} {2 – 2\sin \theta } d\theta$
$= 16\left[ {\theta + \cos \theta } \right]_{\theta = 0}^{\theta = \frac{\pi }{2}}$
$= 16\left[ {(\frac{\pi }{2} + 0) – (0 + 1)} \right] = 8\pi – 16 ∎$
此題考點:曲面分析與面積分
第十八題 (4 分)
Let $\textbf{F}(x,y,z) = (\sin y,x\cos y + \cos z, – y\sin z)$, $C:\mathop {r} \limits^{\rightharpoonup}(t)=(\sin t,\cos t,2t)$, $0\leq t\leq \pi$.
$\int_C \textbf{F}\cdot d\mathop {r} \limits^{\rightharpoonup}$ is ?
提示
做功,也就是線積分的題目,通常可以使用直接算、滿足條件時使用格林定理、使用線積分版本的微積分基本定理等。這題積分區域並不是封閉曲線,而且不好直接算,因此嘗試使用線積分版的微積分基本定理,也就是要找potential function,三個變數的找法可以先用其中兩個對照,之後再和第三個對照,還原後將起點與終點代入就結束了。
解答
$1^{\circ}$ 若 $\nabla f=\textbf{F}$ 則 $\int \textbf{F} \cdot d\mathop {r} \limits^{\rightharpoonup} = f((r(\pi )) – f(r(0)) = \int {F(r(t))} \cdot r'(t)dt$
Let $\nabla f=\textbf{F}\Rightarrow \left\{ \begin{array}{lc} f_x = \sin y & (1) \\ {f_y = x\cos y + \cos z} & (2) \\ f_z = – y\sin z & (3) \end{array} \right.$
$\because f_x=\sin y$
$\therefore f = x\sin y + \varphi (y,z) (4)$
$\because f_y \mathop = \limits^{(2)} x\cos y + \cos z = x\cos y + \varphi _y (y,z)$
$\therefore \varphi (y,z) = \cos z$
$\Rightarrow \varphi (y,z) = y\cos z + \phi (z) (5)$
$\because f_z \mathop = \limits^{(3)} – y\sin z\mathop = \limits^{(5)} – \sin z + \phi ‘(z)$
$\therefore \phi^{\prime}(z{\rm{) = 0}} \Rightarrow \phi (z) = C$
代回 $(5)\Rightarrow f = x\sin y + y\cos z + C$
取 $f=x\sin y+y\cos z$
$2^{\circ}$ 所求$= f(r(\pi )) – f(r(0))$
$= f(0, – 1,2\pi ) – f(0,1,0)$
$=(0-1)-(0+1)=-2 ∎$
此題考點:線積分
第十九題 (4 分)
Let $C$ be the curve consisting of line segments from $(0,0)$ to $(2,1)$ to $(1,2)$ to $(0,0)$. $\int_C {(x – y)dx + (2x + y)dy} =$?
提示
這一題同樣考線積分,而且積分區域是由三個點所圍成的封閉的逆時針三角型曲線,又這個區域內部使得 $(x-y,2x+y)$ 的值都存在,因此滿足使用格林定理的條件。
第二十題 (4 分)
The flux of the vector field $\textbf{F} == (\sin y + x^3 ,3yz^2 + e^z ,3xy^2 )$ through the surface $x^2+y^2+z^2=1,\ z\ge 0$, where the surface is equipped with the upward normal, is ?
提示
本題為通量計算,這類題目除了直接算之外還有散度定理可以用,需要注意使用條件。散度定理有個常使用的技巧:把積分範圍補成定理可操作的範圍,用定理算出答案,再把多餘的部分求出並扣掉,這題就有用到。
解答
$1^{\circ}\ \iint_{S\cup E}\textbf{F}\cdot\hat{n}dS$
$=\iiint_{\Omega}\text{div}\textbf{F}dV$ (By Gauss’ divergence theorem)
$=\iiint_{\Omega}3x^2+3z^2+3y^2dV$
$=3=\iiint_{\Omega}x^2+y^2+z^2dV$
$= 3\int_0^{2\pi } {\int_0^{\frac{\pi }{2}} {\int_0^1 {r^2 \cdot r^2 } \sin \varphi } drd\varphi d\theta }$
$= 3\int_0^{2\pi } {\int_0^{\frac{\pi }{2}} {\sin \varphi } } \underbrace {\int_0^1 {r^4 } dr}_{\frac{1}{5}}d\varphi d\theta$
$= \frac{3}{5}\left. {\int_0^{2\pi } { – \cos \varphi } } \right|_{\varphi = 0}^{\varphi = \frac{\pi }{2}} d\theta$
$= \frac{3}{5} \cdot 2\pi = \frac{{6\pi }}{5}$
$2^{\circ}\ \iint_{E}\textbf{F}\cdot\hat{n}dS$
$=\iint_E(\sin y – x^3 ,3yz^2 + e^z ,3zy^2 ) \cdot (0,0, – 1)dxdy$
$=\iint_{x^2 + y^2 \le 1,z = 0}-3zy^2dxdy=0$
$3^{\circ}$ 所求$= \frac{{6\pi }}{5} – 0 = \frac{6}{5}\pi ∎$
此題考點:散度定理
有任何問題歡迎底下留言,或加入 Discord 和大家一起討論。如果覺得這份解答對你有幫助,請幫我按讚和多多分享,謝謝!