本卷適合理工學院的學生練習,難易度適中,若想要贏過其他對手,務必要精熟這張考卷的所有題目。
本解答由張旭老師及南享老師共同完成。
建議使用電腦瀏覽,手機或平板的算式可能會超出畫面。
甲. 填充題
第一題 (8 分)
Evaluate $\mathop {\lim }\limits_{x \to 0^ + } (\sin x)^x$.
提示
求極限遇到函數的底數與指數都有未知數,且此極限是由這個未知數所決定,想馬上到換底公式 $f(x)=e^{\ln f(x)}$。
解答
$1^{\circ}$ 所求$=\mathop {\lim }\limits_{x \to {\rm{0}}^ + } e^{\ln (\sin x)^x }$
$= e^{\mathop {\lim }\limits_{x \to 0^ + } x\ln (\sin x)}$
$= e^{\mathop {\lim }\limits_{x \to 0^ + } \frac{{\ln (\sin x)}}{{\frac{1}{x}}}}$
$\mathop = \limits^{\rm{L}} e^{\mathop {\lim }\limits_{x \to 0^ + } \frac{{\frac{{\cos x}}{{\sin x}}}}{{ – \frac{1}{{x^2 }}}}}$
$= e^{\mathop {\lim }\limits_{x \to 0^ + } \frac{x}{{\sin x}}( – x\cos x)}$
$= e^{1 \times 0 \times 1} = e^0 = 1 ∎$
註:考試時須註明”$\mathop = \limits^{\text{L}}$”是使用羅必達法則。
此題考點:羅必達法則
第二題 (8 分)
Let $f(x) = \int_1^x {\sqrt {1 + t^2 } } dt$. Find $(f^{ – 1} )'(0)$.
提示
遇到函數已積分式表示,而且上下界有未知數,想到微積分基本定理。
解答
$\begin{array}{cl} 1^{\circ}\ (f^{ – 1} )'(0) & =\left[ {f'(1)} \right]^{ – 1} = \left[ {\left. {\frac{d}{{dx}}\int_1^x {\sqrt {1 + t^2 } } dt} \right|_{x = 1} } \right]^{ – 1} \\ & =\left[ {\left. {\sqrt {1 + x^2 } } \right|_{x = 1} } \right]^{ – 1} = (\sqrt 2 )^{ – 1} = \frac{1}{{\sqrt 2 }} ∎ \end{array}$
此題考點:微積分基本定理 II
第三題 (8 分)
Find the average value of the function $f(x,y)=e^{-x^2}$ over the plane region $R$ where $R$ is the triangle with vertices $(0,0),\ (1,0)$ and $(1,1)$.
提示
這一題要求函數在一封閉範圍內的平均,因此在該範圍積分後除以面積即可。看到被積函數,有些同學可能會聯想到高斯積分,不過要是高斯積分也需要某些條件,下筆之前要確認清楚。
解答
$\begin{array}{cl} 1^{\circ}\ \int_R {f(x,y)} dA & =\int_0^1 {\int_0^x {e^{ – x^2 } } dy} dx \\ & =\int_0^1 {e^{ – x^2 } x} dx \\ & =\int_0^{ – 1} {e^u } \frac{{du}}{{ – 2}}\\&=\frac{1}{2}\int_{ – 1}^0 {e^u } du = \frac{1}{2}(e^0 \cdot e^{ – 1} ) = \frac{1}{2}(1 – \frac{1}{e}) \end{array}$
$2^{\circ}$ 所求$=\frac{{\frac{1}{2}(1 – \frac{1}{e})}}{{\frac{1}{2}}} = 1 – \frac{1}{e} ∎$
此題考點:二變數函數的積分
第四題 (8 分)
Evaluate the definite integral $\int_1^9 {\frac{1}{{\sqrt x (1 + \sqrt x )^2 }}} dx$.
提示
單變數積分是必考題,馬上想到四大積分法。
解答
$1^{\circ}$ 令 $u=1+\sqrt{x}\Rightarrow du = \frac{1}{{2\sqrt x }}dx$
所求$= \int_2^4 {\frac{1}{{u^2 }}} du$
$= 2\left[ {\frac{{u^{ – 1} }}{{ – 1}}} \right]_{u = 2}^{u = 4}$
$= 2(\frac{{\frac{1}{4}}}{{ – 1}} – \frac{{\frac{1}{2}}}{{ – 1}}) = 2( – \frac{1}{4} + \frac{1}{2}) = \frac{1}{2} ∎$
此題考點:四大積分基本方法之一:變數變換法
第五題 (8 分)
Find the direction in which the function $f(x,y)=x^2y+e^{xy}\sin y$ increases most rapidly at the point $(1,0)$.
提示
本題為梯度的基本題。
第六題 (8 分)
Find the maximum value of $f(x,y)=x^2+2y^2-2x+3$ subject to the constraint $x^2+y^2=10$.
提示
有限制條件(非無窮、裡面並無開集合的概念)求極值想到拉格朗日乘數法。
解答
$1^{\circ}$ Let $g(x,y)=x^2+2y^2-2x+3$
$\Rightarrow \left\{ {\begin{array}{c}{\nabla f + \lambda \nabla g = 0} \\ {x^2 + y^2 = 0}\end{array}} \right.$
$\Rightarrow \left\{ {\begin{array}{c} {(2x – 2,4y) + \lambda (2x,2y) = (0,0)} \\ {x^2 + y^2 = 10} \end{array}} \right.$
$\Rightarrow \left\{ {\begin{array}{l} {x – 1 + \lambda x = 0} \\ {2y + \lambda y = 0} \\ {x^2 + y^2 = 10} \end{array}} \right.\Rightarrow y(2 + \lambda ) = 0\Rightarrow y=0\text{ or }\lambda=-2$
$2^{\circ}$ For $y=0$
$\because x^2+y^2=10$
$\therefore x^2=10\ (x=\pm\sqrt{10})$
$\Rightarrow (x,y)=(\pm\sqrt{10},0)$
$\Rightarrow f(x,y) = 10 + 0 \mp 2\sqrt {10} + 3 = 13 \pm 2\sqrt {10}$
For $\lambda=-2$
$\because x-1+\lambda x=0$
$\therefore x-1-2x=0$
$\Rightarrow -x-1=0\Rightarrow x=1$
$\Rightarrow (x,y)=(-1,\pm 3)$
$f(x,y)=1+18+2+3=24$
$3^{\circ}$ By $2^{\circ}\ \text{max.}=24 ∎$
此題考點:拉格朗日乘數法
第七題 (8 分)
Find the work done by the $F = \frac{{x\textbf{i} + y\textbf{j}}}{{(x^2 + y^2 )^{\frac{3}{2}} }}$ over the plane curve $r(t) = (e^t \cos t)\textbf{i} + (e^t \sin t)\textbf{j}$ from the point $(1,0)$ to the point $(e^{2\pi},0)$.
提示
做功是向量微積分的範圍,若有滿足條件可以使用格林定理,但積分路徑並非封閉曲線,因此直接用參數化算。
解答
$1^{\circ}$ 原式$= \int_0^{2\pi } {\frac{{(e^t \cos t,e^t \sin t)}}{{e^{3t} }} \cdot (e^t \cos t – e^t \sin t,e^t \sin t + e^t \cos t)} dt$
$= \int_0^{2\pi } {e^{ – t} (\cos ^2 t – \cos t\sin t + \sin ^2 t + \sin t\cos t)} dt$
$= \int_0^{2\pi } {e^{ – t} } dt = \left. { – e^{ – t} } \right|_{t = 0}^{t = 2\pi } = – e^{ – 2\pi } – ( – e^0 ) = 1 – e^{ – 2\pi } ∎$
此題考點:線積分
第八題 (8 分)
Convert the integral $\int_0^{2\pi } {\int_0^{\sqrt 2 } {\int_r^{\sqrt {4 – r^2 } } 3 dz} rdr} d\theta,\ r\ge 0$ to an equivalent integral in spherical coordinates.
提示
本題比較特別,並不是直接算三重積分,而是要將柱座標轉換成球座標,畫圖判斷即可。
乙. 計算證明題
第一題 (12 分)
Determine if the series converges or diverges.
〔1〕$\sum\limits_{n = 0}^\infty {e^{ – n^2 } }$ (6分) 〔2〕$\sum\limits_{n = 1}^\infty {\sin \frac{1}{n}}$ (6分)
提示
級數和的歛散性是必考的題目,因此八大審斂法需要很熟悉。第一題和高斯積分有關,可以配合積分審斂法;第二題則可以用 $\mathop {\lim }\limits_{x \to 0} \frac{{\sin x}}{x}$ 的結論搭配極限比較審斂法。
解答
〔1〕
$1^{\circ}\ \because \int_0^\infty {e^{ – x^2 } } dx = \frac{{\sqrt \pi }}{2}$
$\therefore \sum\limits_{n = 1}^\infty {e^{ – n^2 } }$ converges. (by integral test) ∎
$\begin{array}{cl}◎\ \int_{ – \infty }^\infty {\int_{ – \infty }^\infty {e^{ – (x^2 + y^2 )} } } dxdy & =\int_0^{2\pi } {\int_0^\infty {e^{ – r^2 } } rdrd\theta } \\ & =\int_0^{2\pi } {\int_0^{ – \infty } {e^u } } (\frac{{du}}{{ – 2}})d\theta \\ & =\frac{1}{2}\int_0^{2\pi } {\int_{ – \infty }^0 {e^u } du} d\theta\\&=\frac{1}{2}\int_0^{2\pi } 1 d\theta = \pi \end{array}$
$\Rightarrow \int_{ – \infty }^\infty {e^{ – x^2 } } dx = \sqrt \pi\Rightarrow \int_0^\infty {e^{ – x^2 } } dx = \frac{{\sqrt \pi }}{2}$
〔2〕
$1^{\circ}\ \because \mathop {\lim }\limits_{n \to \infty } \frac{{\sin \frac{1}{n}}}{{\frac{1}{n}}} = \mathop {\lim }\limits_{\theta \to 0^ + } \frac{{\sin \theta }}{\theta } = 1$ (Let $\theta=\frac{1}{n}$)
and $\sum\limits_{n = 1}^\infty {\frac{1}{n}}$ diverges. (by $p$-series test)
$\therefore \sum\limits_{n = 1}^\infty {\sin \frac{1}{n}}$ diverges. (by limit comparison test) ∎
第二題 (12 分)
Use the limits definition to show that $g^{\prime}(0)$ exists but $g'(0) \ne \mathop {\lim }\limits_{x \to 0} g'(x)$, where $g(x) = \left\{ {\begin{array}{cc} {x^2 \sin \frac{1}{x},} & {{\text{if }}x \ne 0} \\ {0,} & {{\text{if }}x = 0} \end{array}} \right.$.
提示
此題要求用定義計算 $x=0$ 時的微分,和用微分性質的結果作比較。
解答
$\begin{array}{cl} 1^{\circ}\ g^{\prime}(0)& =\mathop {\lim }\limits_{h \to 0} \frac{{g(0 + h) – g(0)}}{h} \\ & =\mathop {\lim }\limits_{h \to 0} \frac{{h^2 \sin \frac{1}{h} – 0}}{h} \\ & =\mathop {\lim }\limits_{h \to 0} h \cdot \sin \frac{1}{h} = 0 \end{array}$
$2^{\circ}$ For $x\ne 0$
$\begin{array}{cl} g^{\prime}(x) & =2x \cdot \sin \frac{1}{x} + x^2 (\cos \frac{1}{x}) \cdot \frac{{ – 1}}{x} \\ & =2x\sin \frac{1}{x} – \cos \frac{1}{x}\end{array}$
$\Rightarrow \mathop {\lim }\limits_{x \to 0} g'(x) = \mathop {\lim }\limits_{x \to 0} (2x \cdot \sin \frac{1}{x} – \cos \frac{1}{x})$ D.N.E.
$\Rightarrow g'(0) \ne \mathop {\lim }\limits_{x \to 0} g'(x) ∎$
此題考點:導數與微分的概念
第三題 (12 分)
Find the area of the surface cut from the paraboloid $x^2+y+z^2=2$ by the plane $y=0$.
提示
最後一題要算曲面面積,有既定公式可以直接求,也可以從面積的通用公式處理。
解答
$1^{\circ}$ Let $r(x,z) = (x,2 – x^2 – z^2 ,z),\ x^2 + z^2 \le 2$
$\begin{array}{cl} \Rightarrow\text{ Area } & =\iint_{\Omega}\parallel {r_x \times r_z } \parallel dA \\ & =\iint_{\Omega}\parallel {(1,-2x,0) \times (0,-2z,1) } \parallel dxdz \\ & =\iint_{\Omega}\sqrt {4x^2 + 1 + 4z^2 }dxdz\\&= \int_0^{2\pi } {\int_0^{\sqrt 2 } {\sqrt {1 + 4r^2 } } rdrd\theta }\\&(\text{Let }u = \sqrt {1 + 4r^2 } \Rightarrow du = 8rdr)\\&=\int_0^{2\pi } {\int_1^9 {\sqrt u \frac{{du}}{8}} d\theta } = \frac{1}{8}\int_0^{2\pi } {\left. {\frac{{u^{\frac{3}{2}} }}{{\frac{3}{2}}}} \right|_1^9 d\theta }\\&=\frac{1}{8} \times \frac{2}{3}\int_0^{2\pi } {27 – 1} d\theta = \frac{1}{{12}} \times 26 \times 2\pi = \frac{{13}}{3}\pi ∎ \end{array}$
此題考點:曲面分析與面積分
有任何問題歡迎底下留言,或加入 Discord 和大家一起討論。
如果覺得這份解答對你有幫助,請幫我按讚和多多分享,謝謝!